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Abstract—We show that, via temporal modulation, one can observe and capture a high-speed periodic video well beyond the abilities

of a low-frame-rate camera. By strobing the exposure with unique sequences within the integration time of each frame, we take coded

projections of dynamic events. From a sequence of such frames, we reconstruct a high-speed video of the high-frequency periodic

process. Strobing is used in entertainment, medical imaging, and industrial inspection to generate lower beat frequencies. But this is

limited to scenes with a detectable single dominant frequency and requires high-intensity lighting. In this paper, we address the

problem of sub-Nyquist sampling of periodic signals and show designs to capture and reconstruct such signals. The key result is that

for such signals, the Nyquist rate constraint can be imposed on the strobe rate rather than the sensor rate. The technique is based on

intentional aliasing of the frequency components of the periodic signal while the reconstruction algorithm exploits recent advances in

sparse representations and compressive sensing. We exploit the sparsity of periodic signals in the Fourier domain to develop

reconstruction algorithms that are inspired by compressive sensing.

Index Terms—Computational imaging, high-speed imaging, compressive sensing, compressive video sensing, stroboscopy.

Ç

1 INTRODUCTION

PERIODIC signals are all around us. Several human and
animal biological processes such as heartbeat, breathing,

several cellular processes, industrial automation processes,
and everyday objects such as a hand mixer and a blender all
generate periodic processes. Nevertheless, we are mostly
unaware of the inner workings of some of these high-speed
processes because they occur at a far greater speed than can be
perceived by the human eye. Here, we show a simple but
effective technique that can turn an off-the-shelf video camera
into a powerful high-speed video camera for observing
periodic events.

Strobing is often used in entertainment, medical imaging,
and industrial applications to visualize and capture high-
speed visual phenomena. Active strobing involves illumi-
nating the scene with a rapid sequence of flashes within a
frame time. The classic example is Edgerton’s Rapatron to
capture a golf swing [13]. In modern sensors, it is achieved
passively by multiple exposures within a frame time [36],
[28] or fluttering [29]. We use the term “strobing” to indicate
both active illumination and passive sensor methods.

In case of periodic phenomenon, strobing is commonly
used to achieve aliasing and generate lower beat frequencies.
While strobing performs effectively when the scene consists

of a single frequency with a narrow sideband, it is difficult to
visualize multiple or a wider band of frequencies simulta-
neously. Instead of direct observation of beat frequencies, we
exploit a computational camera approach based on different
sampling sequences. The key idea is to measure appropriate
linear combinations of the periodic signal and then decode
the signal by exploiting the sparsity of the signal in Fourier
domain. We observe that by coding during the exposure
duration of a low-frame-rate (e.g., 25 fps) video camera, we
can take appropriate projections of the signal needed to
reconstruct a high-frame-rate (e.g., 2,000 fps) video. During
each frame, we strobe and capture a coded projection of the
dynamic event and store the integrated frame. After
capturing several frames, we computationally recover the
signal independently at each pixel by exploiting the Fourier
sparsity of periodic signals. Our method of coded exposure
for sampling periodic signals is termed “coded strobing” and
we call our camera the “coded strobing camera” (CSC). Fig. 1
illustrates the functioning of CSC.

1.1 Contributions

. We show that sub-Nyquist sampling of periodic
visual signals is possible and that such signals can be
captured and recovered using a coded strobing
computational camera.

. We develop a sparsity-exploiting reconstruction
algorithm and expose connections to Compressive
Sensing.

. We show that the primary benefit of our approach
over traditional strobing is increased light through-
put and ability to tackle multiple frequencies
simultaneously postcapture.

1.2 Benefits and Limitations

The main constraint for recording a high-speed event is
light throughput. We overcome this constraint for periodic
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signals via sufficient exposure duration (in each frame) and
extended observation window (multiple frames). For well-
lit nonperiodic events, high-speed cameras are ideal. For a
static snapshot, a short exposure photo (or single frame of
the high-speed camera) is sufficient. In both cases, light
throughput is limited but unavoidable. Periodic signals can
also be captured with a high-speed camera. But one will
need a well-lit scene or must illuminate it with unrealisti-
cally bright lights. For example, if we use a 2,000 fps camera
for vocal cord analysis instead of strobing using a
laryngoscope, we would need a significantly brighter
illumination source and this creates the risk of burn injuries
to the throat. A safer option would be a 25 fps camera with a
strobed light source and then exploit the periodicity of vocal
fold movement. Here, we show that an even better option in
terms of light throughput is a computational camera
approach. Further, the need to know the frequency of the
signal at capture time is also avoided. Moreover, the
computational recovery algorithm can tackle the presence
of multiple fundamental frequencies in a scene, which
poses a challenge to traditional strobing.

1.3 Related Work

1.3.1 High-Speed Imaging Hardware

Capturing high-speed events with fast, high-frame-rate
cameras requires imagers with high photoresponsivity at
short integration times, synchronous exposure, and high-
speed parallel readout due to the necessary bandwidth. In
addition, they suffer from challenging storage problems. A
high-speed camera also fails to exploit the interframe
coherence, while our technique takes advantage of a
simplified model of motion. Edgerton has shown visually
stunning results for high-speed objects using extremely
narrow-duration flash [13]. These snapshots capture an
instant of the action but fail to indicate the general movement
in the scene. Multiple low-frame-rate cameras can be
combined to create high-speed sensing. Using a staggered
exposure approach, Shechtman et al. [33] used frames
captured by multiple collocated cameras with overlapped
exposure time. This staggered exposure approach also
assisted a novel reconfigurable multicamera array [37].

Although there are very few methods to superresolve a
video temporally [15], numerous superresolution techniques
have been proposed to increase the spatial resolution of
images. In [17], a superresolution technique to reconstruct a
high-resolution image from a sequence of low-resolution
images was proposed by a backprojection method. A method
of doing superresolution on a low-quality image of a moving
object by first tracking it, estimating motion and deblurring
the motion blur, and creating a high-quality image was
proposed in [4]. Freeman et al. [14] proposed a learning-
based technique for superresolution from one image where
the high-frequency components like the edges of an image
are filled by patches obtained from examples with similar
low-resolution properties. Finally, fundamental limits on
superresolution for reconstruction-based algorithms have
been explored in [1], [22].

1.3.2 Stroboscopy and Periodic Motion

Stroboscopes (from the Greek word ���!�!� for “whir-
ling”) play an important role in scientific research, to study
machinery in motion, in entertainment, and medical
imaging. Muybridge in his pioneering work used multiple
triggered cameras to capture the high-speed motion of
animals [25] and proved that all four of a horse’s hooves left
the ground at the same time during a gallop. Edgerton also
used a flashing lamp to study machine parts in motion [13].
The most common approaches for “freezing” or “slowing
down” the movement are based on temporal aliasing. In
medicine, stroboscopes are used to view the vocal cords for
diagnosis. The patient hums or speaks into a microphone,
which, in turn, activates the stroboscope at either the same
or a slightly lower frequency [20], [30]. However, in all
healthy humans, vocal-fold vibrations are aperiodic to a
greater or lesser degree. Therefore, strobolaryngoscopy
does not capture the fine detail of each individual vibratory
cycle; rather, it shows a pattern averaged over many
successive nonidentical cycles [24], [32]. Modern strobo-
copes for machine inspection [11] are designed for obser-
ving fast repeated motions and for determining RPM. The
idea can also be used to improve spatial resolution by
introducing high-frequency illumination [16].

1.3.3 Processing

In computer vision, the periodic motion of humans has
received significant attention. Seitz and Dyer [31] intro-
duced a novel motion representation, called the period trace,
that provides a complete description of temporal variations
in a cyclic motion, which can be used to detect motion trends
and irregularities. A technique to repair videos with large
static background or cyclic motion was presented in [18].
Laptev et al. [19] presented a method to detect and segment
periodic motion based on sequence alignment without the
need for camera stabilization and tracking. The authors of
[5] exploited the periodicity of moving objects to perform 3D
reconstruction by treating frames with the same phase as
being of the same pose observed from different views. In
[34], the authors showed a strobe-based approach for
capturing high-speed motion using multi-exposure images
obtained within a single frame of a camera. The images of a
baseball appear as distinct nonoverlapping positions in the
image. High temporal and spatial resolution can be obtained
via a hybrid imaging device, which consists of a high spatial
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Fig. 1. CSC: A fast periodic visual phenomenon is recorded by a normal
video camera (25 fps) by randomly opening and closing the shutter at
high speed (2,000 Hz). The phenomenon is accurately reconstructed
from the captured frames at the high-speed shutter rate (2,000 fps).



resolution digital camera in conjunction with a high-frame-
rate but low-resolution video camera [6]. In cases where the
motion can be modeled as linear, there have been several
interesting methods to engineer the motion blur point
spread function so that the blur induced by the imaging
device is invertible. These include coding the exposure [29]
and moving the sensor during the exposure duration [21].
The method presented in this paper tackles a different but
broadly related problem of reconstructing periodic signals
from very low-speed images acquired via a conventional
video camera (albeit enhanced with coded exposure).

1.3.4 Comparison with Flutter Shutter

In [29], the authors showed that by opening and closing the
shutter according to an optimized coded pattern during the
exposure duration of a photograph, one can preserve high-
frequency spatial details in the blurred captured image. The
image can then be deblurred using a manually specified
point-spread function. Similarly, we open and close the
shutter according to a coded pattern and this code is
optimized for capture. Nevertheless, there are significant
differences in the motion models and reconstruction
procedures of both these methods. In flutter shutter (FS),
a constant velocity linear motion model was assumed and
deblurring was done in blurred pixels along the motion
direction. On the other hand, CSC works even on very
complicated motion models as long as the motion is
periodic. In CSC, each of the captured frames is the result
of modulation with a different binary sequence, whereas in
FS, a single frame is modulated with a “all-pass” code.
Further, our method contrasts fundamentally with FS in
reconstruction of the frames. In FS, the system of equations
is not underdetermined, whereas in CSC, we have a
severely underdetermined system. We overcome this
problem by ‘1-norm regularization, appropriate for enfor-
cing sparsity of periodic motion in time. In FS, a single
system of equations is solved for entire image, whereas in
CSC, at each pixel we temporally reconstruct the periodic
signal by solving an underdetermined system.

1.4 Capture and Reconstruction Procedure

The sequence of steps involved in the capture and
reconstruction of a high-speed periodic phenomenon with
typical physical values is listed below, with references to
the appropriate sections for detailed discussion.

. Goal: Using a 25 fps camera and a shutter which can
open and close at 2,000 Hz, capture a high-speed
periodic phenomenon of unknown period by obser-
ving for 5 s.

. The length of the binary code needed is N ¼ 2;000 �
5 ¼ 10;000. For an upsampling factor of U ¼
2;000=25 ¼ 80, find the optimal pseudorandom code
of length N (Section 3.1).

. Capture M ¼ 25� 5 ¼ 125 frames by fluttering the
shutter according to the optimal code. Each captured
frame is an integration of the incoming visual signal
modulated with a corresponding subsequence of
binary values of length U ¼ 80 (Section 2.3).

. Estimate the fundamental frequency of the periodic
signal (Section 2.4.3).

. Using the estimated fundamental frequency, at
each pixel, reconstruct the periodic signal of length

N ¼ 10;000 from M ¼ 125 values by recovering the
signal’s sparse Fourier coefficients (Section 2.4).

2 STROBING AND LIGHT MODULATION

2.1 Traditional Sampling Techniques

Sampling is the process of converting a continuous domain
signal into a set of discrete samples in a manner that allows
approximate or exact reconstruction of the continuous
domain signal from just the discrete samples. The most
fundamental result in sampling is that of the Nyquist-
Shannon sampling theorem. Fig. 2 provides a graphical
illustration of traditional sampling techniques applied to
periodic signals.

Nyquist sampling. Nyquist-Shannon sampling states
that when a continuous domain signal is bandlimited to
½0; f0�Hz, one can exactly reconstruct the bandlimited signal,
by just observing discrete samples of the signal at a sampling
rate fs greater than 2f0 [27]. When the signal has frequency
components that are higher than the prescribed bandlimit,
then during the reconstruction, the higher frequencies get
aliased as lower frequencies making the reconstruction
erroneous (see Fig. 2b(c)). If the goal is to capture a signal
whose maximum frequency fMax is 1,000 Hz, then one needs
a high-speed camera capable of 2,000 fps in order to acquire
the signal. Such high-speed video cameras are light limited
and expensive.

Band-pass sampling (strobing). If the signal is periodic,
as shown in Fig. 2a(a), then we can intentionally alias the
periodic signal by sampling at a frequency very close to the
fundamental frequency of the signal as shown in Fig. 2a(e).
This intentional aliasing allows us to measure the periodic
signal. This technique is commonly used for vocal fold
visualization [24], [32]. However, traditional strobing
suffers from the following limitations: The frequency of
the original signal must be known at capture time so that
one may perform strobing at the right frequency. Second,
the strobe signal must be “ON” for a very short duration so
that the observed high-speed signal is not smoothed out
and this makes traditional strobing light inefficient. Despite
this handicap, traditional strobing is an extremely interest-
ing and useful visualization tool (and has found several
applications in varying fields).

Nonuniform sampling. With periodic sampling, aliasing
occurs when the sampling rate is not adequate because all
frequencies of the form f1 þ k � fs (k an integer) lead to
identical samples. One method to counter this problem is to
employ nonuniform or random sampling [7], [23]. The key
idea in nonuniform sampling [7], [23] is to ensure a set of
sampling instants such that the observation sequence for any
two frequencies is different at least in one sampling instant.
This scheme has never found widespread practical applic-
ability because of its noise sensitivity and light inefficiency.

2.2 Periodic Signals

Since the focus of this paper is on high-speed video capture of
periodic signals, we first study the properties of such signals.

2.2.1 Fourier Domain Properties of Periodic Signals

Consider a signal xðtÞ which has a period P ¼ 1=fP and a
bandlimit fMax. Since the signal is periodic, we can
express it as
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xðtÞ ¼ xDC þ
Xj¼Q

j¼1

aj cosð2�jfP tÞ þ bj sinð2�jfP tÞ: ð1Þ

Therefore, the Fourier transform of the signal xðtÞ contains
energy only in the frequencies corresponding to jfP , where
j 2 f�Q;�ðQ� 1Þ; . . . 0; 1; . . . ; Qg. Thus, a periodic signal
has a maximum of ðK ¼ 2Qþ 1Þ nonzero Fourier coeffi-
cients. Therefore, periodic signals, by definition, have a very
sparse representation in the Fourier domain. Recent
advances in the field of compressed sensing (CS) [12], [9],
[2], [8], [35] have developed reliable recovery algorithms for
inferring sparse representations if one can measure arbi-
trary linear combinations of the signals. Here, we propose
and describe a method for measuring such linear combina-
tions and use the reconstruction algorithms inspired by CS

to recover the underlying periodic signal from its low-
frame-rate observations.

2.2.2 Effect of Visual Texture on Periodic Motion

Visual texture on surfaces exhibiting periodic motion
introduces high-frequency variations in the observed signal
(Fig. 3d). As a very simple instructive example, consider the
fan shown in Fig. 3a. The fan rotates at a relatively slow rate
of 8.33 Hz. This would seem to indicate that in order to
capture the spinning fan, one only needs a 16.66 fps camera.
During exposure time of 60 ms of a 16.66 Hz camera, the
figure “1” written on the fan blade completes about half a
revolution blurring it out (Fig. 3b). Shown in Fig. 3c is the
time profile of the intensity of a single pixel using a high-
speed video camera. Note that the sudden drop in intensity

674 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 4, APRIL 2011

-50 0 0 5 00
1 02

1 04

F req u en cy in H z

M
ag

n
itu

d
e

of
F

T
in

lo
g

sc
al

e

F re q u en cy sp ec tru m o f th e s ig n al at p ix el (11 5 ,24 5)

F u n d am en tal fre q u e n c y
f
P

= 8.3 3H z

0 50 100 150 200 250
0

20

40

60

80

100

120

Time in ms

In
te

n
si

ty
o

fp
ix

el
(1

15
,2

45
)

Signal at a pixel over few periods

Period P = 119 ms

1 ms notch due
to '1'

Fig. 3. (a) Video of a fan from a high-speed camera. (b) A 16.66 Hz camera blurs out the “1” in the image. (c) A few periods of the signal at a pixel
where the figure “1” passes. Note the notch of duration 1 ms in the intensity profile. (d) Fourier transform of the signal in (c). Note the higher
frequency components in a signal with low fundamental frequency fP .

Fig. 2. (a) Time domain and (b) the corresponding frequency domain characteristics of various sampling techniques as applicable to periodic signals.
Note that capturing high-speed visual signals using normal camera can result in attenuation of high frequencies ((b) and (c)), whereas a high-speed
camera demands large bandwidth (d) and traditional strobing is light inefficient (e). Coded strobing is shown in (f). To illustrate sampling, only two
replicas have been shown and note that colors used in time domain and frequency domain are unrelated.



due to the dark number “1” appearing on the blades
persists only for about 1 millisecond. Therefore, we need a
1,000 fps high-speed camera to observe the “1” without any
blur. In short, the highest temporal frequency observed at a
pixel is a product of the highest frequency of the periodic
event in time and the highest frequency of the spatial
pattern on the objects across the direction of motion. This
makes the capture of high-speed periodic signals with
texture more challenging.

2.2.3 Quasi-Periodic Signals

Most real-world “periodic signals” are not exactly so, but
almost; there are small changes in the period of the signal
over time. We refer to such a broader class of signals as
quasi-periodic. For example, the Crest toothbrush we use in
our experiments exhibits a quasi-periodic motion with
fundamental frequency that varies between 63 and 64 Hz.

Fig. 4a shows few periods of a quasi-periodic signal at a
pixel of a vibrating tooth brush. Variation in fundamental
frequency fP between 63 and 64 Hz over time can be seen
in Fig. 4b. Variation in fP of a quasi-periodic signal is
reflected in its Fourier transform, which contains energy
not just at multiples jfP but in a small band around jfP .
Nevertheless, like periodic signals, the Fourier coefficients
are concentrated at jfP (Fig. 4c) and are sparse in the
frequency domain. The coefficients are distributed in a
band ½jfP � j�fP ; jfP þ j�fP �. For example, �fP ¼ 0:75 Hz
in Fig. 4d.

2.3 Coded Exposure Sampling (or Coded Strobing)

The key idea is to measure appropriate linear combinations
of the periodic signal and then recover the signal by
exploiting the sparsity of the signal in the Fourier domain
(Fig. 5). Observe that by coding the incoming signal during
the exposure duration, we take appropriate projections of
the desired signal.

2.3.1 Camera Observation Model

Consider a luminance signal xðtÞ. If the signal is
bandlimited to ½�fMax; fMax�, then in order to accurately
represent and recover the signal, we only need to measure
samples of the signal that are �t ¼ 1=ð2fMaxÞ apart, where
�t represents the temporal resolution with which we wish
to reconstruct the signal. If the total time of observing the
signal is N�t, then the N samples can be represented in an
N-dimensional vector x.

In a normal camera, the radiance at a single pixel is
integrated during the exposure time, and the sum is
recorded as the observed intensity at a pixel. Instead of
integrating during the entire frame duration, we perform
amplitude modulation of the incoming radiance values,
before integration. Then, the observed intensity values y at a
given pixel can be represented as

y ¼ Cxþ �; ð2Þ

where the M �N matrix C performs both the modulation
and integration for frame duration, and � represents the
observation noise. Fig. 5 shows the structure of matrix C. If
the camera observes a frame every Ts seconds, the total
number of frames/observations would be M ¼ N�t=Ts and
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Fig. 4. (a) Six periods of an N ¼ 32;768 ms long quasi-periodic signal at
a pixel of a scene captured by 1,000 fps high-speed camera.
(b) Fundamental frequency fP varying with time. (c) Fourier coefficients
of the quasi-periodic signal shown in (a). (d) On zoom, we notice that
the signal energy is concentrated in a band around the fundamental
frequency fP and its harmonics.

Fig. 5. The observation model shows the capture process of the CSC, where different colors correspond to different frames and the binary shutter
sequence is depicted using the presence or absence of color. Note that each frame uses a different binary subsequence. The signal model illustrates
the sparsity in the frequency spectrum of a periodic signal.



so y is an M � 1 vector. The camera sampling time Ts is far
larger than the time resolution we would like to achieve (�t);
therefore, M � N . The upsampling factor (or decimation
ratio) of CSC can be defined as

Upsampling factor ¼ U ¼ N

M
¼ 2fMax

fs
: ð3Þ

For example, in the experiment shown in Fig. 15, fMax ¼
1;000 Hz, and fs ¼ 25 fps. Therefore, the upsampling factor
achieved is 80, i.e., the frame rate of CSC is 80 times smaller
than that of an equivalent high-speed video camera. Even
though the modulation function can be arbitrary, in practice
it is usually restricted to be binary (open or close shutter).
Effective modulation can be achieved with codes that have
a 50 percent transmission, i.e., the shutter is open for
50 percent of the total time, thereby limiting light loss at
capture time to just 50 percent.

2.3.2 Signal Model

If x, the luminance at a pixel, is bandlimited, then it can be
represented as

x ¼ Bs; ð4Þ

where the columns of B contain Fourier basis elements.
Moreover, since the signal xðtÞ is assumed to be periodic,
we know that the basis coefficient vector s is sparse, as
shown in Fig. 5. Putting together the signal and observation
model, the intensities in the observed frames are related to
the basis coefficients as

y ¼ Cxþ � ¼ CBsþ � ¼ Asþ �; ð5Þ

where A is the effective mixing matrix of the forward
process. Recovery of the high-speed periodic motion x
amounts to solving the linear system of equations (5).

2.4 Reconstruction Algorithms

To reconstruct the high-speed periodic signal x, it suffices to
reconstruct its Fourier coefficients s from modulated
intensity observations y of the scene.

Unknowns, measurements, and sparsity. In (5), the
number of unknowns exceeds the number of known
variables by a factor U (typically 80), and hence, the system
of equations (5) is severely underdetermined (M � N). To
obtain robust solutions, further knowledge about the signal
must be used. Since the Fourier coefficients s of a periodic
signal x are sparse, a reconstruction technique enforcing
sparsity of s could still hope to recover the periodic signal x.

We present two reconstruction algorithms, one which
enforces the sparsity of the Fourier coefficients and is
inspired by compressive sensing and other which addition-
ally enforces the structure of the sparse Fourier coefficients.

2.4.1 Sparsity Enforcing Reconstruction

Estimating a sparse vector s (with K nonzero entries) that
satisfies y ¼ Asþ � can be formulated as an ‘0 optimization
problem:

ðP0Þ : minksk0 s:t ky�Ask2 � 	: ð6Þ

Although for general s, this is an NP-hard problem, for K
sufficiently small, the equivalence between ‘0 and ‘1-norm

[8] allows us to reformulate the problem as one of ‘1-norm
minimization, which is a convex program with very
efficient algorithms [12], [8], [2]:

ðP1Þ : minksk1 s:t ky�Ask2 � 	: ð7Þ

The parameter 	 allows for the variation in the modeling of
signal’s sparsity and/or noise in the observed frames. In
practice, it is set to a fraction of captured signal energy (e.g.,
	 ¼ 0:03kyk2) and is dictated by the prior knowledge about
camera noise in general and the extent of periodicity of the
captured phenomenon. An interior point implementation
(BPDN) of (P1) is used to accurately solve for s. Instead, in
most experiments in this paper, at the cost of minor
degradation in performance we use CoSaMP [26], a faster
greedy algorithm, to solve (P0). Both (P0) and (P1) don’t
take into account the structure in the sparse coefficients of
the periodic signal. By additionally enforcing the structure
of the sparse coefficients s, we achieve robustness in
recovery of the periodic signal.

2.4.2 Structured Sparse Reconstruction

We recall that periodic/quasi-periodic signals are 1) sparse
in the Fourier basis and 2) if the period is P ¼ 1=fP , the only
frequency content the signal has is in the small bands at the
harmonics jfP , j an integer. Often, the period P is not known
a priori. If the period is known or can be estimated from the
data y, then for a hypothesized fundamental frequency fH ,
we can construct a set SfH with basis elements ½jfH�
�fH; jfH þ�fH �, for j 2 f�Q; . . . 0; 1; . . . ; Qg, such that all of
the sparse Fourier coefficients will lie in this smaller set. Now
the problem (P0) can instead be reformulated as

ðPStructuredÞ : minksk0 s:t

ky�Ask2 � 	 and

nonZeroðsÞ 2 SfH for somefH 2 ½0; fMax�;
ð8Þ

where nonZeroðsÞ is a set containing all of the nonzero
elements in the reconstructed s. Since the extent of quasi-
periodicity is not known a priori, the band �fH is chosen
safely large and the nonzero coefficients continue to remain
sparse in the set SfH . Intuitively, problem PStructured gives a
better sparse solution compared to (P0) since the nonzero
coefficients are searched over a smaller set SfH . An example
of a periodic signal and its recovery using sparsity enforcing
(P1) and structured sparsity is shown in Fig. 6b. The recovery
using PStructured is exact whereas (P0) fails to recover the
high-frequency components.

The restatement of the problem provides two significant
advantages. First, it reduces the problem search space of the
original ‘0 formulation. To solve the original ‘0 formulation,
one has to search over NCK sets. For example, if we observe
a signal for 5 seconds at 1 ms resolution, then N is 5,000 and
NCK is prohibitively large (10212 for K ¼ P ¼ 100). Second,
this formulation implicitly enforces the quasi-periodicity of
the recovered signal and this extra constraint allows us to
solve for the unknown quasi-periodic signal with far fewer
measurements than would otherwise be possible. The type
of algorithms that exploit further statistical structure in the
support of the sparse coefficients come under model-based
compressive sensing [3].
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2.4.3 Knowledge of Fundamental Frequency

Structured sparse reconstruction performs better over a
larger range of upsampling factors and, since the structure
of nonzero coefficients is dependent on fundamental
frequency fP , we estimate it first.

Identification of fundamental frequency. For both
periodic and quasi-periodic signals, we solve a sequence
of least-square problems to identify the fundamental
frequency fP . For a hypothesized fundamental frequency
fH , we build a set SfH with only the frequencies jfH (for
both periodic and quasi-periodic signals). Truncated matrix
AfH is constructed by retaining only the columns with
indices in SfH . Nonzero coefficients ŝfH are then estimated
by solving the equation y ¼ AfHsfH in a least-squares sense.
We are interested in fH which has a small reconstruction
error ky� ŷfHk (or largest output SNR), where ŷfH ¼
AfHŝfH . If fP is the fundamental frequency, then all of the
sets SfH , where fH is a factor of fP , will provide a good fit to
the observed signal y. Hence, the plot of output SNR has
multiple peaks corresponding to the good fits. From these
peaks, we pick the one with largest fH . In Fig. 7, we show
results of experiments on synthetic data sets under two
scenarios: noisy signal and quasi-periodicity. We note that
even when 1) the signal is noisy and 2) when the quasi-
periodicity of the signal increases, the last peak in the SNR
plot occurs at fundamental frequency fP . We generate
quasi-periodic signals from periodic signals by warping the
time variable. Note that solving a least-squares problem for
a hypothesized fundamental frequency fH is equivalent to
solving Pstructured with �fH ¼ 0. Setting �fH ¼ 0 eases the

process of finding the fundamental frequency by avoiding
the need to set the parameter �fH appropriate for both the
captured signal and fH . This is especially useful for quasi-
periodic signals, where a priori knowledge of quasi-
periodicity is not available.

3 DESIGN ANALYSIS

In this section, we analyze important design issues and gain
a better understanding of the performance of coded strobing
method through experiments on synthetic examples.

3.1 Optimal Code for Coded Strobing

3.1.1 Theoretically Optimal Code

The optimization problems (6) and (7) give unique and
exact solutions provided the underdetermined matrix A
satisfies the restricted isometry property (RIP) [10]. Since the
location of the K nonzeros of the sparse vector s that
generates the observation y is not known a priori, RIP
demands that all submatrices of A with 2K columns have a
low condition number. In other words, every possible
restriction of 2K columns is nearly orthonormal, and hence,
isometric. Evaluating RIP for a matrix is a combinatorial
problem since it involves checking the condition number of
all NC2K submatrices.

Alternately, matrix A satisfies RIP if every row of C is
incoherent with every column ofB. In other words, no row of
C can be sparsely represented by columns of B. Tropp et al.
[36] showed in a general setting that if the code matrix C is
drawn from an IID Rademacher distribution, the resulting
mixing matrixA satisfies RIP with a high probability. It must
be noted that a modulation matrix C with entries “þ1,” “�1”
is implementable but would involve using a beam splitter
and two cameras in place of one. Due to ease of implementa-
tion (details in Section 4), for modulation, we use a binary
“1,” “0” code matrix C as described in Section 2.3.1. For a
given signal lengthN and an upsampling factorU , we would
like to pick a binary “1,” “0” code that results in mixing
matrix A, optimal in the sense of RIP.

Note that the sparsity of quasi-periodic signals is
structured and the nonzero elements occur at regular
intervals. Hence, unlike the general setting, RIP should be
satisfied and evaluated over only a select subset of columns.
Since the fundamental frequency fP of the signal is not
known a priori, it suffices if the isometry is evaluated over a
sequence of matrices �A corresponding to hypothesized
fundamental frequency fH . Hence, for a given N and U , a
code matrix C which results in the smallest condition
number over all of the sequence of matrices �A is desired. In
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Fig. 7. Identifying the fundamental frequency fP . Output SNR kyk=ky�
ŷfHk in dB is plotted against hypothesized fundamental frequency fH .
(a) Plot of SNR as the noise in y is varied. Note that the last peak occurs
at fH ¼ 165 (¼ N

P ). (b) Plot of SNR with varying level of quasi-periodicity.

Fig. 6. (a) Overview of structured sparse and sparsity enforcing
reconstruction algorithms. (b) Five periods of a noisy (SNR ¼ 35 dB)
periodic signal x (P ¼ 14 units). Signals recovered by structured and
normal sparsity enforcing reconstruction are also shown.



practice, such a C is suboptimally found by randomly
generating the binary codes tens of thousands of times and
picking the best one.

Compared to a normal camera, CSC blocks half the light
but captures all the frequency content of the periodic signal.
The sinc response of the box filter of a normal camera
attenuates the harmonics near its zeros as well as the higher
frequencies as shown in Fig. 2b. To avoid the attenuation of
harmonics, the frame duration of the camera has to be
changed appropriately. But, this is undesirable since most
cameras come with a discrete set of frame rates. Moreover,
it is hard to have a priori knowledge of the signal’s period.
This problem is entirely avoided by modulating the
incoming signal with a pseudorandom binary sequence.
Shown in Fig. 8 is the temporal and frequency domain
visualization of the effect of CSC on a single harmonic.
Modulation with a pseudorandom binary code spreads the
harmonic across the spectrum. Thus, every harmonic
irrespective of its position avoids the attenuation, the sinc
response causes.

We perform numerical experiments to show the effec-
tiveness of CSC (binary code) over the normal camera
(all “1” code). Shown in Table 1 is the comparison of the
largest and smallest condition numbers of the matrix �A
arising in CSC and normal camera. For a given signal length
N ¼ 5;000 and upsampling factor U ¼ 25 (the second

column in Table 1), we vary the period P and generate
different matrices �A for both CSC and normal camera. The
largest condition number (1:8� 1019) of mixing matrix �A of
a normal camera occurs for signal of period P ¼ 75.
Similarly, the smallest condition number occurs for
P ¼ 67. On the other hand, the mixing matrix �A of CSC
has significantly lower maximum (at P ¼ 9) and minimum
(at P ¼ 67) condition numbers. Note that the largest and
smallest condition number of CSC matrices �A across
different upsampling factors U are significantly smaller
compared to those of normal camera matrices. This
indicates that when the period of the signal is not known
a priori, it is prudent to use CSC over normal camera.

3.1.2 Performance Evaluation

We perform simulations on periodic signals to compare the
performance of sparsity enforcing and structured sparse
reconstruction algorithms on CSC frames, structured sparse
reconstruction on normal camera frames, and traditional
strobing. SNR plots of the reconstructed signal using the
four approaches for varying period P , upsampling factor U ,
and noise level in y are shown in Fig. 9. The signal length is
fixed to N ¼ 2;000 units. The advantage of structured sparse
reconstruction is apparent from comparing blue and red
plots. The advantage of CSC over normal camera can be
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Fig. 8. (a) Time domain and (b) corresponding frequency domain understanding of CSC. Shown in (a) is a single sinusoid. (b)-(d) The effect of coded
strobing capture on the sinusoid. (e) Coded strobing capture of multiple sinusoids is simply a linear combination of the sinusoids.

TABLE 1
Table Comparing the Largest and Smallest Condition Numbers of Mixing Matrix �A

Corresponding to Normal (NC) and Coded Strobing Exposure (CSC)



seen by comparing blue and black plots. Note that the
normal camera performs poorly when the upsampling
factor U is a multiple of the period P .

3.2 Experiments on a Synthetic Animation

We perform experiments on a synthetic animation of a fractal
to show the efficacy of our approach. We also analyze the
performance of the algorithm under various noisy scenarios.
We assume that at every �t ¼ 1 ms, a frame of the animation is
being observed and that the animation is repetitive with P ¼
25 ms (25 distinct images in the fractal). Two such frames are
shown in Fig. 10a. A normal camera running at fs ¼ 25 fps
will integrate 40 frames of the animation into a single frame,
resulting in blurred images. Two images from a 25 fps video
are shown in Fig. 10b. By performing amplitude modulation

at the shutter as described in Section 2.3.1, the CSC obtains
frames at the same rate as that of the normal camera (25 fps)
but with the images encoding the temporal movement
occurring during the integration process of the camera
sensor. Two frames from the CSC are shown in Fig. 10c.
Note that in images (b) and (c) and also in images in other
experiments, we rescaled the intensities appropriately for
better display. For our experiment, we observe the animation
for 5 seconds (N ¼ 5;000) resulting inM ¼ 125 frames. From
these 125 frames, we recover frequency content of the
periodic signal being observed by enforcing sparsity in
reconstruction as described in Section 2.4. We compare
structured sparse reconstruction on normal camera frames,
normal sparse and structured sparse reconstruction on CSC
frames, and the results are shown in Figs. 10d, 10e, and 10f,
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Fig. 9. Performance analysis of structured and normal sparsity enforcing reconstruction for CSC and structured sparsity enforcing reconstruction for
normal camera: (a) Reconstruction SNR as the period P increases. (b) Reconstruction SNR as upsampling factor U increases. (c) Reconstruction
SNR as the noise in y is varied.

Fig. 10. (a) Original frames of the fractal sequence, which repeat every P ¼ 25 ms. (b) Frames captured by a normal 25 fps camera. (c) Frames
captured by a CSC running at 25 fps. (d) Frames reconstructed by enforcing structured sparsity on CSC frames (SNR 17.8 dB). (e) Frames
reconstructed by enforcing structured sparsity on normal camera frames (SNR 7.2 dB). (f) Frames reconstructed by enforcing simple sparsity on CSC
frames (SNR 7.5 dB). Overall 5 seconds (N ¼ 5;000) of the sequence was observed to reconstruct it back fully. Upsampling factor was set at U ¼ 40
(M ¼ 125) corresponding to �t ¼ 1 ms. Note that image intensities in (b) and (c) have been rescaled appropriately for better display.



respectively. It is important to modulate the scene with a code
to capture all frequencies and enforcing both sparsity and
structure in reconstruction ensures that the periodic signal is
recovered accurately.

Noise analysis and influence of upsampling factor. We
perform statistical analysis on the impact of two most
common sources of noise in CSC and also analyze the
influence of upsampling factor on reconstruction. We
recover the signal using structured sparsity enforcing
reconstruction. First, we study the impact of sensor noise.
Fig. 11a shows the performance of our reconstruction with
increasing noise level �. We fixed the upsampling factor at
U ¼ 40 in these simulations. The reconstruction SNR varies
linearly with the SNR of the input signal in accordance with
compressive sensing theory. The second most significant
source of errors in a CSC is errors in the implementation of
the code due to the lack of synchronization between the
shutter and the camera. These errors are modeled as bit-
flips in the code. Fig. 11b shows the resilience of the coded
strobing method to such bit-flip errors. The upsampling
factor is again fixed at 40. Finally, we are interested in an
understanding of how far the upsampling factor can be
pushed without compromising on the reconstruction qual-
ity. Fig. 11c shows the reconstruction SNR as the upsam-
pling factor increases. This indicates that by using
structured sparsity enforcing reconstruction algorithm, we
can achieve large upsampling factors with a reasonable
fidelity of reconstruction. Using the procedure described in
the previous section, we estimate the fundamental fre-
quency as fp ¼ 40 Hz (Fig. 11d).

4 EXPERIMENTAL PROTOTYPES

4.1 High-Speed Video Camera

In order to study the feasibility and robustness of the
proposed camera, we first tested the approach using a

high-speed video camera. We used an expensive 1,000 fps
video camera, and captured high-speed video. We had to use
strong illumination sources to light the scene and capture
reasonably noise-free high-speed frames. We then added
several of these frames (according to the strobe code) in
software to simulate low-speed coded strobing camera
frames. The simulated CSC frames were used to reconstruct
the high-speed video. Some results of such experiments are
reported in Fig. 12.

4.2 Sensor Integration Mechanism

We implement CSC for our experiments using an off-the-
shelf Dragonfly2 camera from PointGrey Research [28],
without modifications. The camera allows a triggering
mode (Multiple Exposure Pulse Width Mode—Mode 5) in
which the sensor integrates the incoming light when the
trigger is “1” and is inactive when the trigger is “0.” The
trigger allows us exposure control at a temporal resolution
of �t ¼ 1 ms. For every frame, we use a unique triggering
sequence corresponding to a unique code. The camera
outputs the integrated sensor readings as a frame after a
specified number of integration periods. Also, each integra-
tion period includes at its end a period of about 30 ms,
during which the camera processes the integrated sensor
readings into a frame. The huge benefit of this setup is that
it allows us to use an off-the-shelf camera to slow down
high-speed events around us. On the other hand, the
hardware bottleneck in the camera restricts us to operating
at an effective frame rate of 10 fps (100 ms) and a strobe rate
of 1,000 strobes/second (�t ¼ 1 ms).

4.3 Ferroelectric Shutter

The PointGrey Dragonfly2 provides exposure control with a
time resolution of 1 ms. Hence, it allows us a temporal
resolution of �t ¼ 1 ms at recovery time. However, when the
maximum linear velocity of the object is greater than 1 pixel
per ms, the reconstructed frames have motion blur. One can
avoid this problem with finer control over the exposure
time. For example, a DisplayTech ferroelectric liquid crystal
shutter provides an ON/OFF contrast ratio of about
1;000 : 1, while simultaneously providing very fast switch-
ing time of about 250 
s. We built a prototype where the
Dragonfly2 captures the frames at usual 25 fps and also
triggers a PIC controller after every frame, which, in turn,
flutters the ferroelectric shutter with a new code at a
specified temporal frequency. In our experiment, we set the
temporal resolution at 500 
s, i.e., 2,000 strobes/second.

4.4 Retrofitting Commercial Stroboscopes

Another exciting alternative to implement CSC is to retrofit
commercial stroboscopes. Commercial stroboscopes used in
laryngoscopy usually allow the strobe light to be triggered
via a trigger input. Stroboscopes that allow such an external
trigger for the strobe can be easily retrofitted to be used as a
CSC. The PIC controller used to trigger the ferroelectric
shutter can instead be used to synchronously trigger the
strobe light of the stroboscope, thus converting a traditional
stroboscope into a coded stroboscope.

5 EXPERIMENTAL RESULTS

To validate our design, we conduct two kinds of experi-
ments. In the first experiment, we capture high-speed
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Fig. 11. Performance analysis of CSC: (a) Reconstruction SNR as the
observation noise increases. (b) Impact of bit-flips in the binary exposure
sequence. (c) Coded strobing camera captures the scene accurately up
to an upsampling factor U ¼ 50. (d) kyk=ky� ŷk against varying
hypothesized fundamental frequency fH .



videos and then generate CSC frames by appropriately
adding frames of the high-speed video. In the second set of
experiments, we captured videos of fast moving objects
with a low-frame-rate CSC implemented using a Dragon-
fly2 video camera. Details about the project and implemen-
tation can be found at http://www.umiacs.umd.edu/
~dikpal/Projects/codedstrobing.html.

5.1 High-Speed Video of Toothbrush

We capture a high-speed (1,000 fps) video of a pulsating
Crest toothbrush with quasi-periodic linear and oscillatory
motions at about 63 Hz. Fig. 4b shows the frequency of the
toothbrush as a function of time. Note that even within a
short window of 30 seconds, there are significant changes in
frequency. We render a 100, 20, and 10 fps CSC (i.e., a frame
duration of 10, 50, and 100 ms, respectively) by adding
appropriate high-speed video frames, but reconstruct the
moving toothbrush images at a resolution of 1 ms, as shown
in Fig. 12c. Frames of the CSC operating at 100, 20, and 10
fps (U ¼ 10, 50, and 100, respectively) are shown in
Fig. 12b. The fine bristles of the toothbrush add high-
frequency components because of texture variations. The
bristles on the circular head moved almost 6 pixels within 1
ms. Thus, the captured images from the high-speed camera
themselves exhibited blur of about 6 pixels, which can be
seen in the recovered images. Note that contrary to what it

seems to the naked eye, the circular head of the toothbrush
does not actually complete a rotation. It just exhibits
oscillatory motion of 45 degrees and we are able to see it
from the high-speed reconstruction.

To test the robustness of coded strobing capture and
recovery on the visual quality of images, we corrupt the
observed images y with white noise having SNR ¼ 15 dB.
The results of the recovery without and with noise are
shown in Fig. 13.

We compare frames recovered from CSC to those
recovered from a normal camera (by enforcing structured
sparsity) to illustrate the effectiveness of modulating the
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Fig. 13. Reconstruction results of the toothbrush with upsampling factor
U ¼ 10 without and with 15 dB noise in (a) and (b), respectively.

(c)

Fig. 12. Reconstruction results of an oscillating toothbrush under three different capture parameters (U): Images for simulation captured by a
1,000 fps high-speed camera at time instances t1, t2, and t3 are shown in (a). The second row (b) shows a frame each from the coded strobing
capture (simulated from frames in (a)) at upsampling factors U ¼ 10, 50, and 100, respectively. Reconstruction at time instances t1, t2, and t3
from the frames captured at U ¼ 10 is shown in the first column of (c).



frames. The normal camera doesn’t capture the motion in

the bristles as well (Fig. 14) and is saturated.

5.2 Mill-Tool Results Using Ferroelectric Shutter

We use a Dragonfly2 camera with a ferroelectric shutter
and capture images of a tool rotating in a mill. Since the tool
can rotate at speeds as high as 12,000 rpm (200 Hz), to
prevent blur in reconstructed images, we use the ferro-
electric shutter for modulation with a temporal resolution
of 0.5 ms. The CSC runs at 25 fps (40 ms frame length) with
the ferroelectric shutter fluttering at 2,000 strobes/second.
Shown in Fig. 15 are the reconstructions at 2,000 fps
(�t ¼ 0:5 ms) of a tool rotating at 3,000, 6,000, 9,000, and
12,000 rpm. Without a priori knowledge of scene frequen-
cies, we use the same strobed coding and the same software
decoding procedure for the mill tool rotating at different
revolutions per minute (rpm). This shows that we can
capture any sequence of periodic motion with unknown
period with a single predetermined code. In contrast, in
traditional strobing, prior knowledge of the period is
necessary to strobe at the appropriate frequency. Note that
the reconstructed image of the tool rotating at 3,000 rpm is
crisp (Fig. 15a) and the images blur progressively as the
rpm increases. Since the temporal resolution of the
Dragonfly2 strobe is 0.5 ms, the features on the tool begin

to blur at speeds as fast as 12,000 rpm (Fig. 15d). In fact, the
linear velocity of the tool across the image plane is about 33
pixels per ms (for 12,000 rpm), while the width of the tool is
about 45 pixels. Therefore, the recovered tool is blurred to
about one-third its width in 0.5 ms.

5.3 Toothbrush Using Dragonfly2 Camera

We use a Dragonfly2 camera operating in Trigger Mode 5
to capture a coded sequence of the Crest toothbrush
oscillating. The camera operated at 10 fps, but we
reconstruct video of the toothbrush at 1,000 fps (U ¼ 100),
as shown in Fig. 16. Even though the camera acquires a
frame every 100 ms, the reconstruction is at a temporal
resolution of 1 ms. If we assume that there are L photons
per millisecond (ms), then each frame of the camera would
acquire around 0:5 � 100 � L photons. In comparison, each
frame of a high-speed camera would accumulate
L photons, while a traditional strobing camera would
accumulate L � fP=fs ¼ 6:3L photons per frame.

5.4 High-Speed Video of a Jog

Using frames from a high-speed (250 fps) video of a person
jogging in place, we simulate in the computer the capture of
the scene using a normal camera and the CSC at upsampling
factors ofU ¼ 25, 50, and 75. The coded frames from CSC are
used to reconstruct back the original high-speed frames by
enforcing structured sparsity. The result of the reconstruction
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Fig. 14. Reconstruction results of the toothbrush with upsampling factor
U ¼ 50. Note that using CSC to capture periodic scenes allows us better
reconstruction over using a normal camera.

Fig. 15. Tool bit rotating at different rpm captured using coded strobing: The top row shows the coded images acquired by a PGR Dragonfly2 at 25
fps, with an external FLC shutter fluttering at 2,000 Hz. (a)-(d) Reconstruction results, at 2,000 fps (temporal resolution �t ¼ 500 
s), of a tool bit
rotating at 3,000, 6,000, 9,000, and 12,000 rpm, respectively. For better visualization, the tool was painted with color prior to the capture.

Fig. 16. Demonstration of CSC at upsampling factor U ¼ 100 using
Dragonfly2. (a) Captured image from a 10 fps CSC (Dragonfly2).
(b)-(c) Two reconstructed frames. While the CSC captured an image
frame every 100 ms, we obtain reconstructions with a temporal
resolution of 1 ms.



using frames from the CSC is contrasted with frames
captured using a normal camera in Fig. 17a. At any given
pixel, the signal is highly quasi-periodic since it is not a
mechanically driven motion, but our algorithm performs
reasonably well in capturing the scene. In Fig. 17b, we
contrast the reconstruction ata pixel for U ¼ 25, 50, and 75.

6 BENEFITS AND LIMITATIONS

6.1 Benefits and Advantages

Coded strobing allows three key advantages over tradi-
tional strobing: 1) signal to noise ratio (SNR) improvements
due to light efficiency, 2) no necessity for prior knowledge
of dominant frequency, and 3) the ability to capture scenes
with multiple periodic phenomena with different funda-
mental frequencies.

Light throughput. Light efficiency plays an important
role if one cannot increase the brightness of external light
sources. Let us consider the linear noise model (scene
independent), where the SNR of the captured image is given
by LTExposure=�gray, where L is the average light intensity at a
pixel and �gray is a signal-independent noise level which
includes effects of dark current, amplifier noise, and A/D
converter noise. For both traditional and coded strobing
cameras, the duration of the shortest exposure time should
at most be t� ¼ 1=ð2fMaxÞ. In traditional strobing, this short
exposure t� is repeated once every period of the signal, and
therefore, the total exposure time in every frame is given by
TStrobing ¼ ð1=2fMaxÞðfP=fsÞ. Since the total exposure time
within a frame can be as large as 50 percent of the total
frame duration for CSC, TCoded ¼ 1=2fs. The decoding
process in coded strobing introduces additional noise, and
this decoding noise factor is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceððATAÞ�1Þ=M

q
:

Therefore, the SNR gain of CSC as compared to traditional
strobing is given by

SNRGain ¼
SNRCoded

SNRStrobing
¼ ðLTCodedÞ=ðd�ÞðLTStrobingÞ=ð�Þ

¼ fMax

dfP
: ð9Þ

For example, in the case of the tool spinning at 3,000 rpm (or
50 Hz), this gain is 20 logð1;000=ð2 � 50ÞÞ ¼ 20 dB since fMax ¼
1;000 Hz for strobe rate 2,000 strobes/second. So, coded
strobing is a great alternative for light-limited scenarios such
as medical inspection in laryngoscopy (where patient tissue
burn is a concern) and long-range imaging.

Knowledge of fundamental frequency. Unlike tradi-
tional strobing, coded strobing can determine signal
frequency in a postcapture, software only process. This
allows for interesting applications, such as simultaneous
capture of multiple signals with very different fundamental
frequencies. Since the processing is independent for each
pixel, we can support scenes with several independently
periodic signals and capture them without a priori knowl-
edge of the frequency bands, as shown in Fig. 18a. Shown in
Fig. 15 are the reconstructions obtained for the tool which
was rotating at 3,000, 4,500, 6,000, and 12,000 rpm. In all of
these cases, the same coded shutter sequence was used at
capture time. Also, the reconstruction algorithm can also
eminently handle both periodic and quasi-periodic signals
using the same framework.

Multiple periodic signals. Unlike traditional strobing,
coded strobing allows us to capture and recover scenes with
multiple periodic motions with different fundamental
frequencies. The capture in coded strobing doesn’t rely on
the frequency of the periodic motion being observed and
the recovery of the signal at each pixel is independent of the
other. This makes it possible to capture a scene with
periodic motions with different fundamental frequencies all
at the same time using the same hardware settings. The
different motions are reconstructed independently by first
estimating the respective fundamental frequencies and then
reconstructing by enforcing structured sparsity.

We perform experiments on an animation with two
periodic motions with different fundamental frequencies.
Shown in Fig. 18a are a few frames of the animation with a
rotating globe on the left and a horse galloping on the right.
The animation was created using frames of a rotating globe,
which repeats every 24 frames, and frames of the classic
galloping horse, which repeats every 15 frames. For simula-
tion, we assume that a new frame of the animation is being
observed at a resolution of �t ¼ 1 ms and we observe the
animation for a total time of 4.8 seconds (N ¼ 4;800). This
makes the period of the globe 24 ms (fP ¼ 41:667 Hz) and that
of the horse 15 ms (fP ¼ 66:667 Hz). The scene is captured
using a 25 fps (U ¼ 40) camera and few of the captured CSC
frames are shown in Fig. 18b. The reconstructed frames
obtained by enforcing structured sparsity are shown in
Fig. 18c. Prior to the reconstruction of the scene at each pixel,
fundamental frequencies of the different motions were
estimated. For one pixel on the horse (marked blue in
Fig. 18a) and one pixel on the globe (marked red), the output
SNR kyk=ky� ŷk is shown as a function of hypothesized
fundamental frequency fH in Fig. 18d. The fundamental
frequency is accurately estimated as 66.667 Hz for the horse
and 41.667 Hz for the globe.
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Fig. 17. Frontal scene of a person jogging in place. (a) A frame captured
by a normal camera (left) and one of the frames recovered from coded
strobing capture at U ¼ 25 (right). (b) Plot in time of the pixel (yellow) of
the original signal and signal reconstructed from coded strobing capture
at U ¼ 25, 50, and 75. Note that the low-frequency parts of the signal
are recovered well compared to the high-frequency spikes.



Ease of implementation. The previous benefits assume
significance because modern cameras, such as the Point-
Grey DragonFly2, allow coded strobing exposure, and
hence, there is no need for expensive hardware modifica-
tions. We instantly transform this off-the-shelf camera into a
2,000 fps high-speed camera using our sampling scheme.
On the other hand, traditional strobing has been extremely
popular and successful because of its direct view capability.
Since our reconstruction algorithm is not yet real-time, we
can only provide a delayed viewing of the signal. Table 2
lists the most important characteristics of the various
sampling methodologies presented.

6.2 Artifacts and Limitations

We address the three most dominant artifacts in our
reconstructions: 1) blur in the reconstructed images due to
time resolution, 2) temporal ringing introduced during
deconvolution process, and 3) saturation due to specularity.

6.2.1 Blur

As shown in Fig. 19, we observe blur in the reconstructed
images when the higher spatiotemporal frequency of the
motion is not captured by the shortest exposure time of
0.5 ms. Note that the blur when �t ¼ 0:5 ms is less
compared to when �t ¼ 1 ms. The width of the tool is
about 45 pixels and the linear velocity of the tool across
the image plane is 33 pixels per millisecond. Hence, there
is a blur of about 16 pixels in the reconstructed image
when �t ¼ 0:5 ms and 33 pixels when �t ¼ 1 ms. Note that
this blur is not a result of the reconstruction process and is
dependent on the smallest temporal resolution. It must

also be noted here that while 12,000 rpm (corresponding
to 200 Hz) is significantly less compared to the 2,000 Hz
temporal resolution offered by coded strobing, the blur is
a result of visual texture on the tool.

6.2.2 Temporal Ringing

Temporal ringing is introduced in the reconstructed images
during the reconstruction (deconvolution) process. For
simplicity, we presented results without any regularization
in the reconstruction process (Fig. 12c). Note that in our
algorithm, reconstruction is per pixel and the ringing is over
time. Fig. 20a shows temporal ringing at two spatially close
pixels. Since the waveforms at these two pixels are related
(typically phase shifted), the temporal ringing appears as
spatial ringing in the reconstructed images (Fig. 16). Either
data-independent Tikhonov regularization or data-depen-
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TABLE 2
Table Showing Relative Benefits and Appropriate Sampling for Presented Methods

Fig. 18. Recovery of multiple periodic motion in a scene. (a) Periodic events with different periods in the same scene. The scene as captured by CSC

with U ¼ 40 is shown in (b). The recovered frames are shown in (c). Shown in (d) is the estimated fundamental frequency of the globe and the horse

at points marked red and blue. Note that the last peak in both the globe and the horse corresponds to the respective fundamental frequency of

41.667 and 66.667 Hz.

Fig. 19. Coded strobing reconstructions exhibit blur when the temporal
resolution �t is not small enough. Shown in (a) and (b) is the same mill
tool rotating at 12,000 rpm and captured by a strobe with �t ¼ 0:5 ms
and �t ¼ 1 ms, respectively. The reconstructions shown in the second
and third column show that �t ¼ 1 ms strobe rate is insufficient and leads
to blur in the reconstructions.



dent regularization (like priors) can be used to improve the
visual quality of the reconstructed videos.

6.2.3 Saturation

Saturation in the captured signal y results in sharp edges,
which, in turn, leads to ringing artifacts in the reconstructed
signal. In Fig. 20b, we can see that the periodic signal
recovered from saturated y has temporal ringing. Since
reconstruction is independent for each pixel, the effect of
saturation is local and does not affect the rest of the pixels in
the image. The typical cause of saturation in the captured
image is due to specularities in the observed scene.
Specularities, that are not saturated, do not pose a problem
and are reconstructed as well as other regions.

7 DISCUSSIONS AND CONCLUSIONS

7.1 Spatial Redundancy

In this paper, we discussed a method called coded strobing
that exploits the temporal redundancy of periodic signals,
and in particular, their sparsity in the Fourier domain in order
to capture high-speed periodic and quasi-periodic signals.
The analysis and the reconstruction algorithms presented
considered the data at every pixel as independent. In reality,
adjacent pixels have temporal profiles that are very similar. In
particular (see Fig. 21), the temporal profiles of adjacent
pixels are related to each other via a phase shift, which
depends upon the local speed and direction of motion of
scene features. This redundancy is currently not being
exploited in our current framework. We are currently
exploring extensions of the CSC that explicitly model this
relationship and use these constraints during the recovery
process.

7.2 Spatiotemporal Resolution Trade-Off

The focus of this paper was on the class of periodic and
quasi-periodic signals. One interesting and exciting avenue
for future work is to extend the application of the CSC to a
wider class of high-speed videos such as high-speed videos
of statistically regular dynamical events (e.g., waterfall,
fluid dynamics, etc.), and finally, to arbitrary high-speed
events such as bursting balloons, etc. One alternative we are
pursuing in this regard is considering a scenario that allows
for spatiotemporal resolution trade-offs, i.e., use a higher
resolution CSC in order to reconstruct lower resolution
high-speed videos of arbitrary scenes. The spatiotemporal

regularity and redundancy available in such videos needs

to be efficiently exploited in order to achieve this end.

7.3 Conclusions

In this paper, we present a simple, yet powerful sampling

scheme and reconstruction algorithm that turns a normal

video camera into a high-speed video camera for periodic

signals. We show that the current design has many benefits

over traditional approaches and show a working prototype

that is able to turn an off-the-shelf 25 fps PointGrey

Dragonfly2 camera into a 2,000 fps high-speed camera.
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